

Hybrid Electric Regional Wing Integration Novel Green Technologies

Project overview 14th EASN conference. Oct 2024 Sebastián Pellicer. Airbus Defence & Space

HERWINGT Objectives

In addition, HERWINGT commits to delivering:

A roadmap towards the wing full-scale demonstration at aircraft level with a first flight in 2028.

Digital twins and a life cycle assessment of the components, subsystems, and full wing system compatible with the reference aircraft digital framework and requirements.

and proposes:

A qualification and certification plan linked to the proposed activities and suitable for Hybrid-Electric Regional (HER) aircraft.

HERWINGT

HERWINGT: Structure of the Consortium

Work breakdown structure

HER-04 WING DESIGN

ACAP ADS

HERWINGT *****

Wing Concepts & Trade Offs

HERWINGT Key Technologies

	Key Technolo	gies	
Global Architecture	Structural and Manufacturing	Aerodynamic	Systems
T2 Development of new structural concepts and architecture. T23 Virtual Testing.	 T1 New materials selection for aeronautical use. T3 LRI Thermoset for sandwich-monolithic High Structural Integration. T4 LRI Thermoset for monolithic multifunctional substrate integration. 	T18 Aerodynamic drag reduction due to high aspect ratio.T19 Aerodynamic drag reduction due to morphing LE & flap.	T13 SHMS development for structural integrity prevention.T15 Ice Protection System Structural Integration.
	 T5 LRI with modified epoxy resin to increase Tg and lighting strike performances. T6 Thermoplastic ISC for low curvature monolithic structural integration. T7 Thermoplastic ISC for high curvature monolithic structural integration. T8 Thermoplastic ISC for multifunctional monolithic high curvature structural integration. T9 Thermoplastic Welding for repairs and structural integration. T11 High rate Automatic fibre placement for TP. 	 T20 Aerodynamic drag reduction due to morphing control surfaces. T21 Aerodynamic drag improvement and load alleviation due to flight control laws optimization. T22 Control of external surface wing tolerances in benefit of improved laminarity. 	T16 Erosion protection. T17 New Sensors, Sealants and Materials technologies for SAF.
CLEAN AVIATION	T12 Fast curing thermoset. T14 Non-destructive testing for highly integrated structures.	K	

DEMONSTRATORS TIMELINE STATUS

Manufacturing

Tooling

Assembly

Development

Hybrid Electric Regional Wing Integration Novel Green Technologies

D1-1 Full scale Outer Wing Box

Partner LDO	Demo Leader Giuseppe Totaro	Mail Demo Leader giuseppe.totaro02@le	Status			
ther contributors WP involved Budget		РМ	Subcontracting	ODCs	IKAA	
HAI, FOK	7.2 <3.3, 4.1, 7.1, 8.1, 8.2>	3.5 M€	€	€	€	€
Description (test description) Outer wing box component (about 3.2m span) will be used to demonstrate Structural and manufacturing technologies aimed to reduce weight and cost. The Outer Wing Box components are:	 Metallic Closure Ribs Thermoplastic Internal Ribs Thermoplastic Lower Stiffened Panel Fast curing Prepreg spars Infusion technology Skin Panel 	Objectives Full Scale Structural ⁻ an High Aspect Ratio	Tests to validate (HAR) outer win	design, manufacting section. Target	uring and assem TRL 3 -> 5	bly process for

D1-2 Pylon to pylon Centre Wing Box

Partner AD	Demo Leader Miriam Agúndez, Ana Rodriguez Henche	Mail Demo Leader Status miriam.agundez@airbus.com , ana.r.rodriguez@airbus.com Status				
Other contributors	WP involved	Budget	PM	Subcontracting	ODCs	IKAA
MTORRES, APPLUS	RRES, APPLUS 5.1 <3.3, 8.2> 4.3 M€	2209 k€	849 k€	643k€	730k€	
 Description Design of a semi pylon to pylon multi-spaskins, spars and stringers, plus upper skin, mounting system. Based on such design, (up to the pylon) demonstrator. Lower part manufactured in one shot LR and stiffeners. One shot LRI Upper cover (skin with string) 	ar centre wing box section, including lower interface with the hybrid-electric propulsion manufacturing and assembly of semi-span I including the skin, the stringers, the spars gers).	 Objectives The challenge of this Explore multisg Manufacturing sweepback an during the mar Structural Test 	innovation is to: par configuration challenges of h ngle so as the so nufacturing proce	is for HAR. high integrated se steering allows th ess.	ections of centre ne study of the	wing: dihedral, curvature limits
Images						

D1-3 Flap demonstrator

Partner ACITURRI	Demo Leader Antonio Almenara	Mail Demo Leader antonio.almenara@aciturri.com				tus	
Other contributors	WP involved	Budget	PM	Subcontracting	ODCs		IKAA
ACISTR, ACIENG, FIDAMC	7.2 <3.3, 7.1, 8.1>	2.1 M€	1.02 M€ 0€ 1.08M		1.08M €		0€
 Description High lift inner flap to be assembled in full det Upper cover Liquid Resin Infusion edge (ALESTIS). Lower cover in Thermoplastic In thermoplastic centre spar (ACIENt manufactured using TP Stamp Forming) 	monstrator: (LRI) integrating leading edge and trailing Situ Consolidation (TP-ISC) with welded G and FIDAMC), with the center spar ng.	 Objectives Demonstrate novel m Multispar conc Leading Edge applicability to Lower cover in technological structures. Maturation of h The testing co and improve th 	anufacturing pro ept. e upper cover natural laminar f ntegration with "C and material nighly integrated onsidered to perf ne demonstrator i	cesses and conc integration to low. C" shape spar wi challenges of one shot manufa orm is in the par	ept for high i understand th TP materi its applicat cturing proce rt as a "Sho	ntegra chall al to u pility c esses. p Trial	ted structures: lenges of its inderstand the on aerospace

D1-4 Thermoset Leading Edge (LE) Multifunctional

Partner IAI	Demo Leader Adam Sawday	Mail Demo Leader asawday@iai.co.il			Status	
Other contributors	WP involved	Budget	PM	Subcontracting	ODCs	IKAA
IK, AD, HAI), HAI 7.1 <3.3, 4.1> 795 k€	670 k€	35 k€	90 k€	High	
Description Leading Edge demonstrator with multi-funct test, Ice Protection System (IPS) and erosio Solid laminate, thermoset structure, Out of A	ional capabilities, including bird-strike virtual n protection. Autoclave (OoA) materials and processes.	Objectives •Design concept for multifunctional Therm •Tooling and assemble integral structure. •OoA material and pro •Material selection that •Building block test cat •Cost effective solution •Final LE demonstrate	the LE structur loset Leading Ed ly approach that ocess approach. at promotes ener ampaign, includir ons. or manufacture a	re, compatible w ge – Bird-strike, l focuses on minir rgy absorption wh ng basic dynamic and supply, includ	ith specific requi PS and erosion. nizing assembly ile minimizing we material propertio	irements of the and maximizing gight. es.

D1-5 Thermoset Leading Edge (LE) Baseline

Partner HAI	Demo Leader Karachalios Evangelos	Mail Demo Leader KARACHALIOS.Evaggelos@haicorp.comStatus					
Other contributors	WP involved	Budget	PM	Subcontracting	OD	Cs	IKAA
AD	7.1 <3.3, 4.1>	871.460 €	446.688€	13.100€	240.0	€ 000	33.816€
Description Leading Edge fabricated following a hybrid r sandwich / Liquid Resin Infusion (LRI) const Bird-strike simulation of the demonstrator. No structural testing foreseen for this demo.	nanufacturing methodology by integrating ruction concept.	 Objectives Advance Liquid Resin Infusion (LRI) process for complex / integrated presentation of the Center Wing Box (CWB) assembly. Contribute to the Center Wing Box (CWB) assembly. Show realistic weight savings and evaluation of the manufacturing route in term sustainability. Contribution to Virtual testing against bird strike (WP 8.4 Lead by UPAT). 					ntegrated parts oute in terms of T).
Images	Baseline LE FEM model Baseline LE FEM model	Demo sc	aled LE mfg trail in WP4.	1			

D1-6 Thermoplastic Leading Edge (LE)

Partner AD	Demo Leader David García	Mail Demo Leader Status david.garcia.benzal@airbus.com Status				
Other contributors	WP involved	Budget	PM	Subcontracting	ODCs	IKAA
ACIENG, ACISTR, FIDAMC, AIMEN	7.1 <3.3>	1.8 M€	1,6M€	N/A	200k€	N/A
Develop a Leading Edge in thermoplastic to Development components with high curr integrated in thermoplastic using in-situ cons Use same geometry to test new welding pro	maturate technology. ved shape with most of its component solidation technology. cesses.	Objectives Two main goals have driven the LE demonstrator's architecture: minimum weight and maximum space available for systems installation and routing. Different technologies will be maturated from TRL3 to TRL5.				nimum structural ng.
Images Contract of the second						

D1-7 Multifunctional Strut

Partner TUD	Demo Leader Jurij Sodja, Ilias Tsatsas	Mail Demo Leader j.sodja@tudelft.nl, i.ts	atsas@tudelft.nl	Status		
Other contributors	WP involved	Budget	PM	Subcontracting	ODCs	IKAA
LDO	1.3, 4.2, 8.2 and 8.3	750 k€	260 k€	€	40 k€	450k€
Description Functional test of a multifunction strut under - Equivalent shear force application via Whif - Equivalent axial loads (tensile/compressive - Demonstrate that the morphing mechanism	representative loads in lab conditions: fletree/cables e) n can operate as expected	Objectives Demonstrate that the and axial loads.	multifunctional s	trut can be operat	ed under represe	entative shear

Illustration of skin sliding due to actuator movement

D1-8 End-to-End Impact Detection SHM System

Partner AD_G	Demo Leader Siegfried Hlasek	Mail Demo Leader siegfried.hlasek@airb	Status			
Other contributors	WP involved	Budget	PM	Subcontracting	ODCs	IKAA
FHG, DLR, CEA 6.4 <7.2, 8.1>	6.4 <7.2, 8.1>	945 k€ (345 fhg/150 dlr /200 cea/250 ad_g)	710€	0€	235€	€
Description Development of an the End-to-End Impact Detect Integration, Validation and Verification of Impact up to TRL5.	ction SHM System and perform End-to-End Detection and Damage Detection SHM System	Objectives The DLR will develop S The FHG will develop structures. AD_G will SHM-System Developm SHM System. CEA will detection-SHM for CBM A test campaign, under This system is expected pylon Centre Wing Bo impacts. High Energy demonstrator.	SHM arrays with p a Data Acquisition do development nent ,Coordination set up and do veri 1 on the wing. basic different enro d to be installed, to basic / Shear Panel) Impacts resulting	piezoceramic trans on hardware (DAQ of a catalogue of the project partner fication of the virtual vironmental condition ested on a internal- t. The test campaing in damage will of	ducers and electro e) and software for requirements in rs and develop the al testing framewor ons, impacts and a and final demons gn will include No only be introduced	onic components. r integration into coordination with Impact Detection rk for the damage artificial damages. trator (Pylon to on- and Damage d on the internal

D1-9 Aeroservoelastic testing on high aspect ratio wing scaled half model

Partner POLIMI	Demo Leader Sergio Ricci, Francesco Toffol	Mail Demo Leader sergio.ricci@polimi.it; francesco.toffol@polimi.itStatus					
Other contributors	WP involved	Budget	РМ	Subcontracting	ODC	s	IKAA
LDO	8.3 <3.3, 7.1, 7.2, 8.2, 8.3>	170.98 k€	58.73 k€	€	102.25 k€		€
Description Scaled aero-servo-elastic half mo Gust and Maneuver Loads Allevia structural weight reduction.	odel of the aircraft to assess the ation technologies aiming at wing	Objectives Validation simulated f scaled (1:8	of Loads tuned gust) half mode	Alleviation teo excitations in w I. Target TRL 3	chnologie ind tunn > 5	es by el on	means of a aeroelastic

D1-10 New Fuel System Integration (SAF)

Partner AD	Demo Leader Francisco Cantos	Mail Demo Leader Status francisco.cantos.galan@airbus.com Status					
Other contributors	WP involved	Budget	PM	Subcontracting	ODCs	IKAA	
	6.1	200 k€	30k€	€	170k€	70k€ €	
Description FQI System (sensors and computation algor The bench will consist of a fuel tank with sor modify the tank attitude. There will be two sets of tests, static and dyn fuel quantities and in many different attitudes	ithms) will be tested on a test bench. ne capacitive probes and actuators to namic, each of them tested with multiple s of the fuel tank.	Objectives (system to To test capacitive prob Statical and dynar Refueling and def Different attitudes Test will be performed no delay is foreseen.	est plan) es behavior wit mical tests ueling (pitch and roll) in ADS Getafe	h Sustainable Avia facilities. Complex	ition Fuel (SAF) due to flammab	ility issue, but	
Images		ann systems		Coper/Close Valve			

D1-11 Induction Heating Ice Protection System

Partner AD	Demo Leader Ana Cardenas, Laura Hernando Gomez, Francisco José Redondo Carracedo	Mail Demo Leader ana.cardenas@airbus.com, laura.hernando@airbus.com, francisco.r.redondo@airbus.comStatus					
Other contributors	WP involved	Budget	PM Subcontracting		ODCs	IKAA	
IK, AIN, RTA	2 <3.3, 7.1, 8.2, 8.3> 1.5 M€	€	€	€	€		
Description Ice protection system based on electromagn the multifunctional thermoset leading edge of	netic heating to be integrated and tested on lemonstrator (D1-4).	Objectives The aim of the demo electromagnetic heati In addition, the integra structural elements w System tests will be p environment.	is to test the fund ing, integrated or ation of the syste ill be assessed. performed at RTA	ctionality of an ice p a composite lead on a real leadin Clce Wind Tunnel i	protection system ing edge. g edge taking in n a representativ	n based on to account its ve icing	

Images

D1-12 Integrated Fuel Vent System

CLEAN AVIATION

Partner AD_G	Demo Leader Siegfried Hlasek (preliminary)	Mail Demo Leader Siegfried.hlasek@airt	Status			
Other contributors	WP involved	Budget PM Subcontracting		ODCs	IKAA	
DLR	3.3 <4.1, 7.1, 7.2, 8.2, 8.3>	850 k€	700€	€	150€	€
Description Multifunctional, structural integrated fuel we demonstrator contains two omega ducts that connected via special couplings that we demonstrator will be tested under pressure.	vent system in thermoset composite. The t are bonded onto a surface. Both ducts are ill be 3D printed onto the ducts. This	Objectives The main objective is functionalities than pu The objective of the d manufacturability and	s to use hollow s ure structural. Th lemonstrator is to demonstrate the	shaped structural his additional fun o provide appropr e performance.	stiffener elemen ction is the fuel v fate design conce	nts for additional vent application. epts, prove their
Images	Principle of pressure tightness test stand	Principle of fuel flow test	2			
					Co-funded	l by ean Union

D1-13 Morphing Trailing Edge Flap

Partner CIRA	Demo Leader Maria Chiara Noviello	Mail Demo Leader m.noviello@cira.it				Status	
Other contributors	ther contributors WP involved Budget		PM	Subcontracting O)Cs	IKAA
LDO, TUD	8.2 <1.2, 1.3, 2.2, 4.2, 7.1, 7.2>	210 k€	95 k€	85 k€	30	k€	€
Description Camber morphing flap demonstrator to be in 0.5 m span) for ground demonstrations (stat	ntegrated into a single-bay assembly (about ic tests, dynamic tests, fatigue).	Objectives Experimental validation Mechanical and fur manufacturing will be Target TRL 3 -> 5	on of camber mo inctional tests managed by CIF	rphing flap conce will be conduc ₹A.	pt on 0. ;ted at	5 m. spai CIRA.	n demonstrator. Morphing flap

D1-14 Morphing Aileron

the European Union

CLEAN AVIATION

Partner POLIMI	Demo Leader Sergio Ricci, Alessandro De Gaspari	Mail Demo Leader sergio.ricci@polimi.it, alessandro.degaspari@polimi.it					;		
Other contributors	WP involved	Budget	PM	Subcontracting	ing ODC		ODCs		IKAA
LDO, TUD	7.2 <3.3, 4.2, 4.3, 7.1, 8.2, 8.3>	113.72 k€	48.72 k€	0 k€	65 k€		0 k€		
Description Full scale, large bandwidth, morp demonstrator, to be applied on in morphing aileron concept aims to the potentialities of better aerodyna flow), better structural efficiency (re	 Objectives Experimental validation of morphing aileron fixed on a rig (unluade condition) and integrated into outer wing demonstrator D1-16 (loade condition). Mechanical structural and functional tests will be conducted ar PoliMi aiming at verify the capability to reproduce target morphed shap). and bandwidth. Target TRL 3 -> 5 								
<figure></figure>		Max. 0.0032 0.0026 0.0001 0.0001 0.0001 0.00000 0.000000		Glass-fibre fabric skin	Working principle		Connection to lower skin		
						Co-fund	ed by		

D1-15 Morphing Droop Nose

Partner POLIMI	Demo Leader Sergio Ricci, Alessandro De Gaspari	Mail Demo Leader sergio.ricci@polimi.it, alessandro.degaspari@polimi.itStatus						
Other contributors	WP involved	Budget	PM	Subcontracting	ODCs	6	IKAA	
LDO, TUD	7.2 <3.3, 4.2, 4.3, 7.1, 8.2, 8.3>	59.58 k€	29.58 k€	0 k€	30 k€		0 k€	
Description Fully compliant morphing droop conditions, to be integrated into demonstrations (static tests, fatigue	nose demonstrator for high lift-flight o a single-bay assembly for ground e).	Objectives ht Experimental validation of structural design by mean of structural functional tests on 0.5 m. span demonstrator aimed to verify performance to reproduce target morphed shape and assessing struc elements fatigue issues. Target TRL 3 -> 5						
Images	$\left \begin{array}{c} 0.2 \\ 0.15 \\ -6.e^{\pm 0.0 \text{ deg}} \\ 0.05 \\ -6.e^{\pm 0.0 \text{ deg}} \\ 0.05 \\ -6.e^{\pm 0.0 \text{ deg}} \\ 0.05 \\ -0.1 \\ -0.15 \\ 0.05 \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.28 \\ 0.3 \\ 0.35 \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.28 \\ 0.3 \\ 0.35 \\ 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \\ 0.28 \\ 0.3 \\ 0.35 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.15 \\ 0.2 \\ 0.28 \\ 0.3 \\ 0.35 \\ 0.15$	Mises Y-IPS (double-sided) yg: 73%6) +9.5728-408 +2.3028-408 +2.3028-408 +1.9068-408 +1.5108-408 +1.5108-408 +1.5108-408 +1.5128-408 +9.1578-407 +9.1578-407 +3.2168-407 +3.21	x: +9.572e+0					

D1-16 Functional testing in Wind Tunnel of full scale outer wing and morphing aileron

	• •					
Partner POLIMI	Demo Leader Sergio Ricci	Mail Demo Leader sergio.ricci@polimi.it			Status	
Other contributors	WP involved	Budget	PM	Subcontracting	ODCs	IKAA
HAI, FOK, LDO	7.2 <3.3, 4.2, 4.3, 7.1, 8.2, 8.3>	65 k€	35 k€	€	30 k€	€
Description Dummy wing box representative of the outer assembled with morphing aileron active demons of morphing aileron wind tunnel air flow condition structural wing box with a dummy affers the adva- finalization of the structural wingbox and the finalization of the structural wingbox and the finalization are actively allocated by the morphing aileron	wing part (for a length of about 3m span), strator, will be used to demonstrate functionality ons (low speed). The replacement of the actual antage to avoid any time constraint between the final wind tunnel testing. This wind tunnel test under low-speed aerodynamic load conditions.	Objectives Functional Tests aimed aileron correlated to the tunnel). Target TRL 3 -> 5	to verify the peri ne actuation syste	formance (rotation em (i.e. power cor	angle, bandwidth) sumption) under	of the morphing wing loads (wind
Images						
				6.	Co funded	bu

D2-1 Nacelle preliminary Digital Mock Up

CLEAN AVIATION

Partner LDO	Demo Leader Giuseppe Totaro		Mai gius	I Demo Leader seppe.totaro02@le	Status						
Other contributors	WP involved		Buc	lget	PM	Subcontracting	ODCs	IKAA			
SIEMENS	5.2 <3.3>		29	Æ	€	€	€	€			
Description Nacelle digital model for aerodynamic and structural verify simulation.			Obj Def des Eva aero Exe Def	ObjectivesDefine regional nacelle configuration in order to improve technological solution linked to design development.Evaluate the aerodynamic impact of nacelle/wing integration as well as nacelle aerodynamic design optimization.Execute structural simulation of the nacelle integration and mounts need. Define an acoustic liner treatment for the propeller-nacelle interaction noise mitigation.							
Images	Planning										
		2023			2024		2025				
				Development phase							
							Co-funde	ed by pean Union			

D2-2 Actuator performances simulation models

Partner COLLINS	Demo Leader Shruthi Shreedharan	Mail Demo Leader shruthi.shreedharan@		Status			
Other contributors	WP involved	Budget	РМ	Subcontracting	OD	Cs	IKAA
GAE, COLFR, COLUK	6.3 <2.4, 3.3, 7.1, 8.2, 8.3>	360 k€	€	€	€	Ē	€
Description Connected to POLIMI data for Aileron & CIR the following simulation models/data are to b - 3D lay out including weight data, mai compliance verification into the wing structur - Performances models to get dynamic perf upon identified need such as Thermal limit Cycles, Reliability Data based on technologi	A data for Morphing Flap (To be confirmed), be provided: in geometry & dimensions for installation re. ormances, additional data may be provided rations based on provided on Aircraft Duty es and configurations.	Objectives Assess data set requi - Weight, - 3D envelope, - Speed, frequency re - Risks and issues f reliability data,) And Support other Wi	ired for sizing the esponse, for the concept 'Ps for physical d	e Actuation Syste of EMA for mor emonstration of A	ms (WP6 phing wi	6.3) such ing (inclu systems	າ as uding thermal ,

D2-3 Bird strike Virtual Test

Partner UPAT	Demo Leader George Lampeas	Mail Demo Leader labeas@upatras.gr	Status			
Other contributors	ibutors WP involved Budget		PM Subcontracting		ODCs	IKAA
CEA	8.4 <3.2>	112 k€	112k€	0€	0€	0€
Description Virtual testing methodology based on a buil demonstrated in the case of bird-strike sin Leading Edge (LE) Baseline and, as a sec (LE) Multifunctional.	ding block multi-scale approach that will be nulation of demonstrators D1-5 Thermoset cond target, D1-4 Thermoset Leading Edge	Objectives To develop a bird-strik and demonstrate the	ke simulation me modelling metho	thodology includii odology.	ng all structural d	etails

Images

D2-4 Novel High Aspect Ratio (HAR) full wing aero-structural Virtual Test

Partner SIEMENS	Demo Leader Philippe Barabinot, Luiz Lima	Mail Demo Leader philippe.barabinot@si	Status			
Other contributors	ontributors WP involved Budget		PM	Subcontracting	ODCs	IKAA
LDO, POLIMI, TUD, COLUK, COLFR	8.4 <8.2, 8.3>	130 k€	100 k€	€	€	30 k€
Description Virtual test demonstrator: High Aspect Ratifor aerodynamic performance (drag reduction)	Objectives Aerodynamic drag re wings under various f HAR wings: structura analysis with a structu	eduction assessr light conditions. al weight assess ural solver (Simc	nent due to new ment using non enter Nastran).	/ morphing tec	hnologies + HAR atic finite element	

Thank you!

Co-funded by the European Union

Acknowledgements

The project is supported by the Clean Aviation Joint Undertaking and its members.

Clean Aviation is the EU's leading research and innovation program for transforming aviation towards a sustainable and climate neutral future.

As a European public-private partnership, Clean Aviation pushes aeronautical science beyond the limits of imagination by creating new technologies that will significantly reduce aviation's impact on the planet, enabling future generations to enjoy the social and economic benefits of air travel far into the future.

Visit the website to find out more about Clean Aviation: www.clean-aviation.eu

Funded by the European Union, GA No 101102010. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Clean Aviation Joint Undertaking. Neither the European Union nor Clean Aviation JU can be held responsible for them.

This document and its contents remain the property of the beneficiaries of the HERWINGT Consortium. It may contain information subject to intellectual property rights. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. Reproduction or circulation of this document to any third party is prohibited without the consent of the author(s).